
ovn-architecture(7) OpenvSwitch Manual ovn-architecture(7)

NAME
ovn-architecture − Open Virtual Network architecture

DESCRIPTION
OVN, the Open Virtual Network, is a system to support virtual network abstraction.OVN complements the
existing capabilities of OVS to add native support for virtual network abstractions, such as virtual L2 and
L3 overlays and security groups.Services such as DHCP are also desirable features. Just like OVS, OVN’s
design goal is to have a production-quality implementation that can operate at significant scale.

An OVN deployment consists of several components:

• A Cloud Management System (CMS), which is OVN’s ultimate client (via its users and
administrators). OVN integration requires installing a CMS-specific plugin and related
software (see below). OVN initially targets OpenStack as CMS.

We generally speak of ‘‘the’’ CMS, but one can imagine scenarios in which multiple
CMSes manage different parts of an OVN deployment.

• An OVN Database physical or virtual node (or, eventually, cluster) installed in a central
location.

• One or more (usually many) hypervisors. Hypervisors must run Open vSwitch and
implement the interface described inIntegrationGuide.md in the OVS source tree.Any
hypervisor platform supported by Open vSwitch is acceptable.

• Zero or moregateways. A gateway extends a tunnel-based logical network into a physi-
cal network by bidirectionally forwarding packets between tunnels and a physical Ether-
net port. This allows non-virtualized machines to participate in logical networks. Agate-
way may be a physical host, a virtual machine, or an ASIC-based hardware switch that
supports thevtep(5) schema. (Support for the latter will come later in OVN implementa-
tion.)

Hypervisors and gateways are together calledtransport node or chassis.

The diagram below shows how the major components of OVN and related software interact. Starting at the
top of the diagram, we have:

• The Cloud Management System, as defined above.

• The OVN/CMS Plugin is the component of the CMS that interfaces to OVN. In Open-
Stack, this is a Neutron plugin.The plugin’s main purpose is to translate the CMS’s
notion of logical network configuration, stored in the CMS’s configuration database in a
CMS-specific format, into an intermediate representation understood by OVN.

This component is necessarily CMS-specific, so a new plugin needs to be developed for
each CMS that is integrated with OVN. All of the components below this one in the dia-
gram are CMS-independent.

• The OVN Northbound Database receives the intermediate representation of logical net-
work configuration passed down by the OVN/CMS Plugin.The database schema is
meant to be ‘‘impedance matched’’ w ith the concepts used in a CMS, so that it directly
supports notions of logical switches, routers, ACLs, and so on.See ovn−nb(5) for
details.

The OVN Northbound Database has only two clients: the OVN/CMS Plugin above it and
ovn−northd below it.

• ovn−northd(8) connects to the OVN Northbound Database above it and the OVN South-
bound Database below it. It translates the logical network configuration in terms of con-
ventional network concepts, taken from the OVN Northbound Database, into logical data-
path flows in the OVN Southbound Database below it.

• The OVN Southbound Database is the center of the system. Its clients are
ovn−northd(8) above it andovn−controller(8) on every transport node below it.

Open vSwitch 2.5.1 OVN Architecture 1

ovn-architecture(7) OpenvSwitch Manual ovn-architecture(7)

The OVN Southbound Database contains three kinds of data:Physical Network (PN)
tables that specify how to reach hypervisor and other nodes,Logical Network (LN) tables
that describe the logical network in terms of ‘‘logical datapath flows,’’ and Binding tables
that link logical network components’ locations to the physical network. Thehypervisors
populate the PN and Port_Binding tables, whereasovn−northd(8) populates the LN
tables.

OVN Southbound Database performance must scale with the number of transport nodes.
This will likely require some work onovsdb−server (1) as we encounter bottlenecks.
Clustering for availability may be needed.

The remaining components are replicated onto each hypervisor:

• ovn−controller(8) is OVN’s agent on each hypervisor and software gateway. North-
bound, it connects to the OVN Southbound Database to learn about OVN configuration
and status and to populate the PN table and theChassiscolumn inBinding table with the
hypervisor’s status. Southbound,it connects toovs−vswitchd(8) as an OpenFlow con-
troller, for control over network traffic, and to the localovsdb−server (1) to allow it to
monitor and control Open vSwitch configuration.

• ovs−vswitchd(8) andovsdb−server (1) are conventional components of Open vSwitch.

CMS
|
|

+−−−−−−−−−−−|−−−−−−−−−−−+
| | |
| O VN/CMS Plugin |
| | |
| | |
| O VN Northbound DB |
| | |
| | |
| o vn−northd |
| | |
+−−−−−−−−−−−|−−−−−−−−−−−+

|
|

+−−−−−−−−−−−−−−−−−−−+
| O VN Southbound DB |
+−−−−−−−−−−−−−−−−−−−+

|
|

+−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+
| | |

HV 1 | | HV n |
+−−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−+ . +−−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−+
		.				
o vn−controller	.	o vn−controller				
			.			
o vs−vswitchd ovsdb−server		ovs−vswitchd ovsdb−server				
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+ +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

Chassis Setup
Each chassis in an OVN deployment must be configured with an Open vSwitch bridge dedicated for OVN’s
use, called theintegration bridge. System startup scripts may create this bridge prior to starting

Open vSwitch 2.5.1 OVN Architecture 2

ovn-architecture(7) OpenvSwitch Manual ovn-architecture(7)

ovn−controller if desired. If this bridge does not exist when ovn-controller starts, it will be created auto-
matically with the default configuration suggested below. The ports on the integration bridge include:

• On any chassis, tunnel ports that OVN uses to maintain logical network connectivity.
ovn−controller adds, updates, and removes these tunnel ports.

• On a hypervisor, any VIFs that are to be attached to logical networks. Thehypervisor
itself, or the integration between Open vSwitch and the hypervisor (described inIntegra-
tionGuide.md) takes care of this. (This is not part of OVN or new to OVN; this is pre-
existing integration work that has already been done on hypervisors that support OVS.)

• On a gateway, the physical port used for logical network connectivity. System startup
scripts add this port to the bridge prior to startingovn−controller . This can be a patch
port to another bridge, instead of a physical port, in more sophisticated setups.

Other ports should not be attached to the integration bridge. In particular, physical ports attached to the
underlay network (as opposed to gateway ports, which are physical ports attached to logical networks) must
not be attached to the integration bridge. Underlay physical ports should instead be attached to a separate
Open vSwitch bridge (they need not be attached to any bridge at all, in fact).

The integration bridge should be configured as described below. The effect of each of these settings is doc-
umented inovs−vswitchd.conf.db(5):

fail−mode=secure
Av oids switching packets between isolated logical networks beforeovn−controller starts
up. SeeController Failur e Settings in ovs−vsctl(8) for more information.

other−config:disable−in−band=true
Suppresses in-band control flows for the integration bridge. It would be unusual for such
flows to show up anyway, because OVN uses a local controller (over a Unix domain
socket) instead of a remote controller. It’s possible, however, for some other bridge in the
same system to have an in-band remote controller, and in that case this suppresses the
flows that in-band control would ordinarily set up.See In−Band Control in
DESIGN.md for more information.

The customary name for the integration bridge isbr−int , but another name may be used.

Logical Networks
A logical network implements the same concepts as physical networks, but they are insulated from the
physical network with tunnels or other encapsulations. This allows logical networks to have separate IP
and other address spaces that overlap, without conflicting, with those used for physical networks. Logical
network topologies can be arranged without regard for the topologies of the physical networks on which
they run.

Logical network concepts in OVN include:

• Logical switches, the logical version of Ethernet switches.

• Logical routers, the logical version of IP routers.Logical switches and routers can be
connected into sophisticated topologies.

• Logical datapaths are the logical version of an OpenFlow switch. Logicalswitches and
routers are both implemented as logical datapaths.

Life Cycle of a VIF
Tables and their schemas presented in isolation are difficult to understand. Here’s an example.

A VIF on a hypervisor is a virtual network interface attached either to a VM or a container running directly
on that hypervisor (This is different from the interface of a container running inside a VM).

The steps in this example refer often to details of the OVN and OVN Northbound database schemas.Please
seeovn−sb(5) andovn−nb(5), respectively, for the full story on these databases.

1. A VIF’s life cycle begins when a CMS administrator creates a new VIF using the CMS user
interface or API and adds it to a switch (one implemented by OVN as a logical switch).The

Open vSwitch 2.5.1 OVN Architecture 3

ovn-architecture(7) OpenvSwitch Manual ovn-architecture(7)

CMS updates its own configuration.This includes associating unique, persistent identifiervif-
id and Ethernet addressmac with the VIF.

2. The CMS plugin updates the OVN Northbound database to include the new VIF, by adding a
row to theLogical_Port table. Inthe new row, name is vif-id, mac is mac, switch points to
the OVN logical switch’s Logical_Switch record, and other columns are initialized appropri-
ately.

3. ovn−northd receives the OVN Northbound database update.In turn, it makes the corre-
sponding updates to the OVN Southbound database, by adding rows to the OVN Southbound
databaseLogical_Flow table to reflect the new port, e.g. add a flow to recognize that packets
destined to the new port’s MAC address should be delivered to it, and update the flow that
delivers broadcast and multicast packets to include the new port. It also creates a record in the
Binding table and populates all its columns except the column that identifies thechassis.

4. On every hypervisor, ovn−controller receives the Logical_Flow table updates that
ovn−northd made in the previous step. As long as the VM that owns the VIF is powered off,
ovn−controller cannot do much; it cannot, for example, arrange to send packets to or receive
packets from the VIF, because the VIF does not actually exist anywhere.

5. Eventually, a user powers on the VM that owns the VIF. On the hypervisor where the VM is
powered on, the integration between the hypervisor and Open vSwitch (described inIntegra-
tionGuide.md) adds the VIF to the OVN integration bridge and storesvif-id in exter-
nal−ids:iface−id to indicate that the interface is an instantiation of the new VIF. (None of this
code is new in OVN; this is pre-existing integration work that has already been done on hyper-
visors that support OVS.)

6. On the hypervisor where the VM is powered on, ovn−controller notices exter-
nal−ids:iface−id in the new Interface. Inresponse, it updates the local hypervisor’s Open-
Flow tables so that packets to and from the VIF are properly handled.Afterward, in the OVN
Southbound DB, it updates theBinding table’schassiscolumn for the row that links the logi-
cal port fromexternal−ids:iface−id to the hypervisor.

7. Some CMS systems, including OpenStack, fully start a VM only when its networking is
ready. To support this,ovn−northd notices thechassiscolumn updated for the row in Bind-
ing table and pushes this upward by updating theup column in the OVN Northbound data-
base’sLogical_Port table to indicate that the VIF is now up. TheCMS, if it uses this feature,
can then react by allowing the VM’s execution to proceed.

8. On every hypervisor but the one where the VIF resides,ovn−controller notices the com-
pletely populated row in the Binding table. Thisprovidesovn−controller the physical loca-
tion of the logical port, so each instance updates the OpenFlow tables of its switch (based on
logical datapath flows in the OVN DBLogical_Flow table) so that packets to and from the
VIF can be properly handled via tunnels.

9. Eventually, a user powers off the VM that owns the VIF. On the hypervisor where the VM
was powered off, the VIF is deleted from the OVN integration bridge.

10. On the hypervisor where the VM was powered off, ovn−controller notices that the VIF was
deleted. Inresponse, it removes theChassiscolumn content in theBinding table for the logi-
cal port.

11. On every hypervisor,ovn−controller notices the emptyChassiscolumn in theBinding ta-
ble’s row for the logical port.This means thatovn−controller no longer knows the physical
location of the logical port, so each instance updates its OpenFlow table to reflect that.

12. Eventually, when the VIF (or its entire VM) is no longer needed by anyone, an administrator
deletes the VIF using the CMS user interface or API.The CMS updates its own configura-
tion.

13. The CMS plugin removes the VIF from the OVN Northbound database, by deleting its row in
theLogical_Port table.

Open vSwitch 2.5.1 OVN Architecture 4

ovn-architecture(7) OpenvSwitch Manual ovn-architecture(7)

14. ovn−northd receives the OVN Northbound update and in turn updates the OVN Southbound
database accordingly, by removing or updating the rows from the OVN Southbound database
Logical_Flow table andBinding table that were related to the now-destroyed VIF.

15. On every hypervisor, ovn−controller receives the Logical_Flow table updates that
ovn−northd made in the previous step.ovn−controller updates OpenFlow tables to reflect
the update, although there may not be much to do, since the VIF had already become unreach-
able when it was removed from theBinding table in a previous step.

Life Cycle of a Container Interface Inside a VM
OVN provides virtual network abstractions by converting information written in OVN_NB database to
OpenFlow flows in each hypervisor. Secure virtual networking for multi-tenants can only be provided if
OVN controller is the only entity that can modify flows in Open vSwitch. When the Open vSwitch integra-
tion bridge resides in the hypervisor, it is a fair assumption to make that tenant workloads running inside
VMs cannot make any changes to Open vSwitch flows.

If the infrastructure provider trusts the applications inside the containers not to break out and modify the
Open vSwitch flows, then containers can be run in hypervisors. Thisis also the case when containers are
run inside the VMs and Open vSwitch integration bridge with flows added by OVN controller resides in the
same VM. For both the above cases, the workflow is the same as explained with an example in the previous
section ("Life Cycle of a VIF").

This section talks about the life cycle of a container interface (CIF) when containers are created in the VMs
and the Open vSwitch integration bridge resides inside the hypervisor. In this case, even if a container
application breaks out, other tenants are not affected because the containers running inside the VMs cannot
modify the flows in the Open vSwitch integration bridge.

When multiple containers are created inside a VM, there are multiple CIFs associated with them. The net-
work traffic associated with these CIFs need to reach the Open vSwitch integration bridge running in the
hypervisor for OVN to support virtual network abstractions.OVN should also be able to distinguish net-
work traffic coming from different CIFs. There are two ways to distinguish network traffic of CIFs.

One way is to provide one VIF for every CIF (1:1 model). This means that there could be a lot of network
devices in the hypervisor. This would slow down OVS because of all the additional CPU cycles needed for
the management of all the VIFs. It would also mean that the entity creating the containers in a VM should
also be able to create the corresponding VIFs in the hypervisor.

The second way is to provide a single VIF for all the CIFs (1:many model). OVN could then distinguish
network traffic coming from different CIFs via a tag written in every packet. OVN uses this mechanism
and uses VLAN as the tagging mechanism.

1. A CIF’s life cycle begins when a container is spawned inside a VM by the either the same
CMS that created the VM or a tenant that owns that VM or even a container Orchestration
System that is different than the CMS that initially created the VM.Whoever the entity is, it
will need to know the vif-id that is associated with the network interface of the VM through
which the container interface’s network traffic is expected to go through. The entity that cre-
ates the container interface will also need to choose an unused VLAN inside that VM.

2. The container spawning entity (either directly or through the CMS that manages the underly-
ing infrastructure) updates the OVN Northbound database to include the new CIF, by adding a
row to theLogical_Port table. Inthe new row, name is any unique identifier, parent_name
is thevif-id of the VM through which the CIF’s network traffic is expected to go through and
thetag is the VLAN tag that identifies the network traffic of that CIF.

3. ovn−northd receives the OVN Northbound database update.In turn, it makes the corre-
sponding updates to the OVN Southbound database, by adding rows to the OVN Southbound
database’sLogical_Flow table to reflect the new port and also by creating a new row in the
Binding table and populating all its columns except the column that identifies thechassis.

4. On every hypervisor,ovn−controller subscribes to the changes in theBinding table. Whena
new row is created byovn−northd that includes a value inparent_port column ofBinding

Open vSwitch 2.5.1 OVN Architecture 5

ovn-architecture(7) OpenvSwitch Manual ovn-architecture(7)

table, theovn−controller in the hypervisor whose OVN integration bridge has that same
value in vif-id in external−ids:iface−id updates the local hypervisor’s OpenFlow tables so
that packets to and from the VIF with the particular VLANtag are properly handled.After-
ward it updates thechassiscolumn of theBinding to reflect the physical location.

5. One can only start the application inside the container after the underlying network is ready.
To support this,ovn−northd notices the updatedchassiscolumn in Binding table and
updates theup column in the OVN Northbound database’s Logical_Port table to indicate that
the CIF is now up. Theentity responsible to start the container application queries this value
and starts the application.

6. Eventually the entity that created and started the container, stops it. The entity, through the
CMS (or directly) deletes its row in theLogical_Port table.

7. ovn−northd receives the OVN Northbound update and in turn updates the OVN Southbound
database accordingly, by removing or updating the rows from the OVN Southbound database
Logical_Flow table that were related to the now-destroyed CIF. It also deletes the row in the
Binding table for that CIF.

8. On every hypervisor, ovn−controller receives the Logical_Flow table updates that
ovn−northd made in the previous step.ovn−controller updates OpenFlow tables to reflect
the update.

Architectural Physical Life Cycle of a Packet
This section describes how a packet travels from one virtual machine or container to another through OVN.
This description focuses on the physical treatment of a packet; for a description of the logical life cycle of a
packet, please refer to theLogical_Flow table inovn−sb(5).

This section mentions several data and metadata fields, for clarity summarized here:

tunnel key
When OVN encapsulates a packet in Geneve or another tunnel, it attaches extra data to it
to allow the receiving OVN instance to process it correctly. This takes different forms
depending on the particular encapsulation, but in each case we refer to it here as the ‘‘tun-
nel key.’’ SeeTunnel Encapsulations, below, for details.

logical datapath field
A field that denotes the logical datapath through which a packet is being processed.OVN
uses the field that OpenFlow 1.1+ simply (and confusingly) calls ‘‘metadata’’ to store the
logical datapath. (This field is passed across tunnels as part of the tunnel key.)

logical input port field
A field that denotes the logical port from which the packet entered the logical datapath.
OVN stores this in Nicira extension register number 6.

Geneve and STT tunnels pass this field as part of the tunnel key. Although VXLAN tun-
nels do not explicitly carry a logical input port, OVN only uses VXLAN to communicate
with gateways that from OVN’s perspective consist of only a single logical port, so that
OVN can set the logical input port field to this one on ingress to the OVN logical pipe-
line.

logical output port field
A field that denotes the logical port from which the packet will leave the logical datapath.
This is initialized to 0 at the beginning of the logical ingress pipeline.OVN stores this in
Nicira extension register number 7.

Geneve and STT tunnels pass this field as part of the tunnel key. VXLAN tunnels do not
transmit the logical output port field.

conntrack zone field
A field that denotes the connection tracking zone. The value only has local significance
and is not meaningful between chassis.This is initialized to 0 at the beginning of the

Open vSwitch 2.5.1 OVN Architecture 6

ovn-architecture(7) OpenvSwitch Manual ovn-architecture(7)

logical ingress pipeline.OVN stores this in Nicira extension register number 5.

VLAN ID
The VLAN ID is used as an interface between OVN and containers nested inside a VM
(seeLife Cycle of a container interface inside a VM, above, for more information).

Initially, a VM or container on the ingress hypervisor sends a packet on a port attached to the OVN integra-
tion bridge. Then:

1. OpenFlow table 0 performs physical-to-logical translation. It matches the packet’s ingress
port. Itsactions annotate the packet with logical metadata, by setting the logical datapath field
to identify the logical datapath that the packet is traversing and the logical input port field to
identify the ingress port. Then it resubmits to table 16 to enter the logical ingress pipeline.

It’s possible that a single ingress physical port maps to multiple logical ports with a type of
localnet. The logical datapath and logical input port fields will be reset and the packet will be
resubmitted to table 16 multiple times.

Packets that originate from a container nested within a VM are treated in a slightly different
way. The originating container can be distinguished based on the VIF-specific VLAN ID, so
the physical-to-logical translation flows additionally match on VLAN ID and the actions strip
the VLAN header. Following this step, OVN treats packets from containers just like any other
packets.

Table 0 also processes packets that arrive from other chassis. It distinguishes them from other
packets by ingress port, which is a tunnel.As with packets just entering the OVN pipeline,
the actions annotate these packets with logical datapath and logical ingress port metadata.In
addition, the actions set the logical output port field, which is available because in OVN tun-
neling occurs after the logical output port is known. Thesethree pieces of information are
obtained from the tunnel encapsulation metadata (seeTunnel Encapsulationsfor encoding
details). Thenthe actions resubmit to table 33 to enter the logical egress pipeline.

2. OpenFlow tables 16 through 31 execute the logical ingress pipeline from theLogical_Flow
table in the OVN Southbound database. These tables are expressed entirely in terms of logi-
cal concepts like logical ports and logical datapaths.A big part ofovn−controller ’s job is to
translate them into equivalent OpenFlow (in particular it translates the table numbers:Logi-
cal_Flow tables 0 through 15 become OpenFlow tables 16 through 31).For a giv en packet,
the logical ingress pipeline eventually executes zero or moreoutput actions:

• If the pipeline executes nooutput actions at all, the packet is effectively dropped.

• Most commonly, the pipeline executes oneoutput action, whichovn−controller
implements by resubmitting the packet to table 32.

• If the pipeline can execute more than oneoutput action, then each one is separately
resubmitted to table 32.This can be used to send multiple copies of the packet to
multiple ports. (If the packet was not modified between theoutput actions, and
some of the copies are destined to the same hypervisor, then using a logical multicast
output port would save bandwidth between hypervisors.)

3. OpenFlow tables 32 through 47 implement theoutput action in the logical ingress pipeline.
Specifically, table 32 handles packets to remote hypervisors, table 33 handles packets to the
local hypervisor, and table 34 discards packets whose logical ingress and egress port are the
same.

Logical patch ports are a special case.Logical patch ports do not have a physical location and
effectively reside on every hypervisor. Thus, flow table 33, for output to ports on the local
hypervisor, naturally implements output to unicast logical patch ports too.However, applying
the same logic to a logical patch port that is part of a logical multicast group yields packet
duplication, because each hypervisor that contains a logical port in the multicast group will
also output the packet to the logical patch port. Thus, multicast groups implement output to
logical patch ports in table 32.

Open vSwitch 2.5.1 OVN Architecture 7

ovn-architecture(7) OpenvSwitch Manual ovn-architecture(7)

Each flow in table 32 matches on a logical output port for unicast or multicast logical ports
that include a logical port on a remote hypervisor. Each flow’s actions implement sending a
packet to the port it matches.For unicast logical output ports on remote hypervisors, the
actions set the tunnel key to the correct value, then send the packet on the tunnel port to the
correct hypervisor. (When the remote hypervisor receives the packet, table 0 there will recog-
nize it as a tunneled packet and pass it along to table 33.)For multicast logical output ports,
the actions send one copy of the packet to each remote hypervisor, in the same way as for uni-
cast destinations. If a multicast group includes a logical port or ports on the local hypervisor,
then its actions also resubmit to table 33.Table 32 also includes a fallback flow that resubmits
to table 33 if there is no other match.

Flows in table 33 resemble those in table 32 but for logical ports that reside locally rather than
remotely. For unicast logical output ports on the local hypervisor, the actions just resubmit to
table 34. For multicast output ports that include one or more logical ports on the local hyper-
visor, for each such logical portP, the actions change the logical output port toP, then resub-
mit to table 34.

Table 34 matches and drops packets for which the logical input and output ports are the same.
It resubmits other packets to table 48.

4. OpenFlow tables 48 through 63 execute the logical egress pipeline from theLogical_Flow ta-
ble in the OVN Southbound database.The egress pipeline can perform a final stage of valida-
tion before packet delivery. Eventually, it may execute anoutput action, whichovn−con-
troller implements by resubmitting to table 64.A packet for which the pipeline never exe-
cutesoutput is effectively dropped (although it may have been transmitted through a tunnel
across a physical network).

The egress pipeline cannot change the logical output port or cause further tunneling.

5. OpenFlow table 64 performs logical-to-physical translation, the opposite of table 0.It
matches the packet’s logical egress port. Its actions output the packet to the port attached to
the OVN integration bridge that represents that logical port. If the logical egress port is a con-
tainer nested with a VM, then before sending the packet the actions push on a VLAN header
with an appropriate VLAN ID.

If the logical egress port is a logical patch port, then table 64 outputs to an OVS patch port
that represents the logical patch port. The packet re-enters the OpenFlow flow table from the
OVS patch port’s peer in table 0, which identifies the logical datapath and logical input port
based on the OVS patch port’s OpenFlow port number.

Life Cycle of a VTEP gateway
A gateway is a chassis that forwards traffic between the OVN-managed part of a logical network and a
physical VLAN, extending a tunnel-based logical network into a physical network.

The steps below refer often to details of the OVN and VTEP database schemas. Please seeovn−sb(5),
ovn−nb(5) andvtep(5), respectively, for the full story on these databases.

1. A VTEP gateway’s life cycle begins with the administrator registering the VTEP gateway as a
Physical_Switchtable entry in theVTEP database. Theovn−controller−vtep connected to
this VTEP database, will recognize the new VTEP gateway and create a new Chassistable
entry for it in theOVN_Southbounddatabase.

2. The administrator can then create a new Logical_Switch table entry, and bind a particular
vlan on a VTEP gateway’s port to any VTEP logical switch.Once a VTEP logical switch is
bound to a VTEP gateway, the ovn−controller−vtep will detect it and add its name to the
vtep_logical_switches column of theChassistable in theOVN_Southbounddatabase. Note,
the tunnel_key column of VTEP logical switch is not filled at creation.The ovn−con-
troller−vtep will set the column when the correponding vtep logical switch is bound to an
OVN logical network.

Open vSwitch 2.5.1 OVN Architecture 8

ovn-architecture(7) OpenvSwitch Manual ovn-architecture(7)

3. Now, the administrator can use the CMS to add a VTEP logical switch to the OVN logical
network. To do that, the CMS must first create a new Logical_Port table entry in the
OVN_Northbound database. Then,the type column of this entry must be set to "vtep".
Next, thevtep-logical-switch andvtep-physical-switch keys in theoptions column must also
be specified, since multiple VTEP gateways can attach to the same VTEP logical switch.

4. The newly created logical port in theOVN_Northbound database and its configuration will
be passed down to theOVN_Southbounddatabase as a new Port_Binding table entry. The
ovn−controller−vtep will recognize the change and bind the logical port to the corresponding
VTEP gateway chassis. Configurationof binding the same VTEP logical switch to a different
OVN logical networks is not allowed and a warning will be generated in the log.

5. Beside binding to the VTEP gateway chassis, theovn−controller−vtep will update thetun-
nel_key column of the VTEP logical switch to the correspondingDatapath_Binding table
entry’stunnel_key for the bound OVN logical network.

6. Next, the ovn−controller−vtep will keep reacting to the configuration change in the
Port_Binding in the OVN_Northbound database, and updating theUcast_Macs_Remote
table in theVTEP database. Thisallows the VTEP gateway to understand where to forward
the unicast traffic coming from the extended external network.

7. Eventually, the VTEP gateway’s life cycle ends when the administrator unregisters the VTEP
gateway from theVTEP database. Theovn−controller−vtep will recognize the event and
remove all related configurations (Chassistable entry and port bindings) in theOVN_South-
bound database.

8. When theovn−controller−vtep is terminated, all related configurations in theOVN_South-
bound database and theVTEP database will be cleaned, includingChassistable entries for
all registered VTEP gateways and their port bindings, and allUcast_Macs_Remotetable
entries and theLogical_Switch tunnel keys.

DESIGN DECISIONS
Tunnel Encapsulations

OVN annotates logical network packets that it sends from one hypervisor to another with the following
three pieces of metadata, which are encoded in an encapsulation-specific fashion:

• 24-bit logical datapath identifier, from thetunnel_key column in the OVN Southbound
Datapath_Binding table.

• 15-bit logical ingress port identifier. ID 0 is reserved for internal use within OVN. IDs 1
through 32767, inclusive, may be assigned to logical ports (see thetunnel_key column in
the OVN SouthboundPort_Binding table).

• 16-bit logical egress port identifier. IDs 0 through 32767 have the same meaning as for
logical ingress ports.IDs 32768 through 65535, inclusive, may be assigned to logical
multicast groups (see thetunnel_key column in the OVN SouthboundMulticast_Group
table).

For hypervisor-to-hypervisor traffic, OVN supports only Geneve and STT encapsulations, for the following
reasons:

• Only STT and Geneve support the large amounts of metadata (over 32 bits per packet)
that OVN uses (as described above).

• STT and Geneve use randomized UDP or TCP source ports that allows efficient distribu-
tion among multiple paths in environments that use ECMP in their underlay.

• NICs are available to offload STT and Geneve encapsulation and decapsulation.

Due to its flexibility , the preferred encapsulation between hypervisors is Geneve. For Geneve encapsula-
tion, OVN transmits the logical datapath identifier in the Geneve VNI. OVN transmits the logical ingress
and logical egress ports in a TLV with class 0x0102, type 0, and a 32-bit value encoded as follows, from
MSB to LSB:

Open vSwitch 2.5.1 OVN Architecture 9

ovn-architecture(7) OpenvSwitch Manual ovn-architecture(7)

rsv ingress port egress port
1

0

15 16

Environments whose NICs lack Geneve offload may prefer STT encapsulation for performance reasons.
For STT encapsulation, OVN encodes all three pieces of logical metadata in the STT 64-bit tunnel ID as
follows, from MSB to LSB:

reservedingress port egress port datapath
9

0

15 16 24

For connecting to gateways, in addition to Geneve and STT, OVN supports VXLAN, because only VXLAN
support is common on top-of-rack (ToR) switches.Currently, gateways have a feature set that matches the
capabilities as defined by the VTEP schema, so fewer bits of metadata are necessary. In the future, gate-
ways that do not support encapsulations with large amounts of metadata may continue to have a reduced
feature set.

Open vSwitch 2.5.1 OVN Architecture 10

