
User-Programmable
Software	Switches

Nick	McKeown

Experience	so	far

Experience	with	P4	programs	written	for	
Tofino @	6.5Tb/s

PISA:	Protocol	Independent	Switch	Architecture

5

Pr
og
ra
m
m
ab
le

Pa
rs
er

Match+Action
Memory ALU

PISA:	Protocol	Independent	Switch	Architecture
Pr
og
ra
m
m
ab
le

Pa
rs
er

Match+Action
Memory ALU

P4	program

P4	Compiler

PISA	Programmable	Switch

P

4

:

P

r

o

g

r

a

m

m

i

n

g

P

r

o

t

o

c

o

l

-

I

n

d

e

p

e

n

d

e

n

t

P

a

c

k

e

t

P

r

o

c

e

s

s

o

r

s

P

a

t

B

o

s

s

h

a

r

t

†

,

D

a

n

D

a

l

y

*
,

G

l

e

n

G

i

b

b

†

,

M

a

r

t

i

n

I

z

z

a

r

d

†

,

N

i

c

k

M

c

K

e

o

w

n

‡

,

J

e

n

n

i

f

e

r

R

e

x

f

o

r

d

**
,

C

o

l

e

S

c

h

l

e

s

i

n

g

e

r

**
,

D

a

n

T

a

l

a

y

c

o

†

,

A

m

i

n

V

a

h

d

a

t

¶

,

G

e

o

r

g

e

V

a

r

g

h

e

s

e

§

,

D

a

v

i

d

W

a

l

k

e

r

**

†

B

a

r

e

f

o

o

t

N

e

t

w

o

r

k

s *
I

n

t

e

l

‡

S

t

a

n

f

o

r

d

U

n

i

v

e

r

s

i

t

y **
P

r

i

n

c

e

t

o

n

U

n

i

v

e

r

s

i

t

y ¶

G

o

o

g

l

e §

M

i

c

r

o

s

o

f

t

R

e

s

e

a

r

c

h

ABSTRACTP4 is a high-level language for programming protocol-inde-

pendent packet processors. P4 works in conjunction with

SDN control protocols like OpenFlow. In its current form,

OpenFlow explicitly specifies protocol headers on which it

operates. This set has grown from 12 to 41 fields in a few

years, increasing the complexity of the specification while

still not providing the flexibility to add new headers. In this

paper we propose P4 as a strawman proposal for how Open-

Flow should evolve in the future. We have three goals: (1)

Reconfigurability in the field: Programmers should be able

to change the way switches process packets once they are

deployed. (2) Protocol independence: Switches should not

be tied to any specific network protocols. (3) Target inde-

pendence: Programmers should be able to describe packet-

processing functionality independently of the specifics of the

underlying hardware. As an example, we describe how to

use P4 to configure a switch to add a new hierarchical label.

1. INTRODUCTION
Software-Defined Networking (SDN) gives operators pro-

grammatic control over their networks. In SDN, the con-

trol plane is physically separate from the forwarding plane,

and one control plane controls multiple forwarding devices.

While forwarding devices could be programmed in many

ways, having a common, open, vendor-agnostic interface

(like OpenFlow) enables a control plane to control forward-

ing devices from di↵erent hardware and software vendors.

Version
Date

Header Fields

OF 1.0
Dec 2009 12 fields (Ethernet, TCP/IPv4)

OF 1.1
Feb 2011 15 fields (MPLS, inter-table metadata)

OF 1.2
Dec 2011 36 fields (ARP, ICMP, IPv6, etc.)

OF 1.3
Jun 2012 40 fields

OF 1.4
Oct 2013 41 fields

Table 1: Fields recognized by the OpenFlow standard

The OpenFlow interface started simple, with the abstrac-

tion of a single table of rules that could match packets on a

dozen header fields (e.g., MAC addresses, IP addresses, pro-

tocol, TCP/UDP port numbers, etc.). Over the past five

years, the specification has grown increasingly more com-

plicated (see Table 1), with many more header fields and

multiple stages of rule tables, to allow switches to expose

more of their capabilities to the controller.

The proliferation of new header fields shows no signs of

stopping. For example, data-center network operators in-

creasingly want to apply new forms of packet encapsula-

tion (e.g., NVGRE, VXLAN, and STT), for which they re-

sort to deploying software switches that are easier to extend

with new functionality. Rather than repeatedly extending

the OpenFlow specification, we argue that future switches

should support flexible mechanisms for parsing packets and

matching header fields, allowing controller applications to

leverage these capabilities through a common, open inter-

face (i.e., a new “OpenFlow 2.0” API). Such a general, ex-

tensible approach would be simpler, more elegant, and more

future-proof than today’s OpenFlow 1.x standard.

Figure 1: P4 is a language to configure switches.

Recent chip designs demonstrate that such flexibility can

be achieved in custom ASICs at terabit speeds [1, 2, 3]. Pro-

gramming this new generation of switch chips is far from

easy. Each chip has its own low-level interface, akin to

microcode programming. In this paper, we sketch the de-

sign of a higher-level language for Programming Protocol-

independent Packet Processors (P4). Figure 1 shows the

relationship between P4—used to configure a switch, telling

it how packets are to be processed—and existing APIs (such

as OpenFlow) that are designed to populate the forwarding

tables in fixed function switches. P4 raises the level of ab-

straction for programming the network, and can serve as a

ACM SIGCOMM Computer Communication Review
88

Volume 44, Number 3, July 2014

P4 Program Sections

9

Parser

Deparser

Header / Metadata
parser parse_ethernet {

extract(ethernet);
return switch(ethernet.ethertype) {

0x8100 : parse_vlan_tag;
0x0800 : parse_ipv4;
0x8847 : parse_mpls;
default: ingress;

}

table port_table { … }
control ingress {

apply(port_table);
if (l2_meta.vlan_tags == 0) {

process_assign_vlan();
}

}

header_type ethernet_t { … }
header_type l2_metadata_t { … }

header ethernet_t ethernet;
header vlan_tag_t vlan_tag[2];
metadata l2_metadata_t l2_meta;

program.p4
Data Declarations

Parser Program

Table + Control Flow Program

P4 program defines what each table CAN do

Control Plane Roles

10

Parser

Deparser

Header / Metadata

program.p4

P4 defined what each table CAN do

Queueing,
Replication

&
Scheduling ...

Parser

Control	plane	or	Switch	OS	
Data Declarations

Parser Program

Table + Control Flow Program

Control plane or NOS decides what the switch actually does

match:action entries queue, multicast, mirror
configurations

Protocols	and	table	complexity	20	years	ago

Ethernet

IPv4 IPX

ethtype ethtype

Datacenter	ToR today
public	switch.p4

Visibility	and	Measurement

Natural	questions

• Which	switches	did	it	visit	to	get	here?	
• What	rules	did	it	match	in	each	switch?	
• What	version	of	the	switch	rule	tables	were	present?	

• Which	queue	did	each	switch	put	our	packet	in?	
• What	was	the	precise	queue	occupancy	when	my	packet	arrived?	
• How	long	did	it	wait?
• Whose	packets	did	it	share	a	queue	with?	

Two	approaches
Each	is	a	P4	program

1. Packet	postcards
• Switch	generates	a	small	time-stamped	 digest	for	every	packet	
• Sends	to	server(s)	for	logging	and	processing
• Pros:	Can	replay	network	history.	Packet	sizes	unchanged.
• Cons:	Lots	of	extra	traffic.

Packet	Postcards

Log,	Replay,	
Analyze,	Control

Two	approaches
Each	is	a	P4	program

1. Packet	postcards
• Switch	generates	a	small	time-stamped	 digest	of	every	packet	header	and	
table	version

• Sends	to	server(s)	for	logging	and	processing
• Pros:	Can	replay	network	history.	Packet	sizes	unchanged.
• Cons:	Lots	of	extra	traffic.

2.		Inband	Network	telemetry	(INT)
• Data	packets	carry	instructions	to	insert	state	into	packet	header
• Pros:	No	additional	packets.	Can	replay	network	history.
• Cons:	Packet	size	increases.

In-band	Network	Telemetry	(INT)

Log,	Replay,	
Analyze,	Control

“Insert:	switchID,	time,	
matched	rules,	 queue	
occupancy,	 switch	
metadata,	…,		...,	...”

Normal	Data	Packet Original	Data	Packet

INT.p4

table int_table {
reads {
ip.protocol;

}
actions {
export_queue_latency;

}
}

Example: Add switch ID and
queue latency to packet

action export_queue_latency (sw_id) {
add_header(int_header);
modify_field(int_header.kind, TCP_OPTION_INT);
modify_field(int_header.len, TCP_OPTION_INT_LEN);
modify_field(int_header.sw_id, sw_id);
modify_field(int_header.q_latency,

intrinsic_metadata.deq_timedelta);
add_to_field(tcp.dataOffset, 2);
add_to_field(ipv4.totalLen, 8);
subtract_from_field(ingress_metadata.tcpLength,

12);
}

PLT:	Path	and	latency	tracking	in	data-plane
How	does	it	work?

• Collect	physical	path	and	hop	latency	of	every packet	via	INT
• Last	hop	creates	a	record	per	connection
• Records	any	sudden	change	in	path	or	latency

How	is	it	used?
• Quickly	detect	changes	in	path-latency	at	line-rate,	in	data-plane
• Confirm	routing	table	or	ACL	rule	changes	in	real	time
• Identify	connections	affected	by	failure,	recovery	or	maintenance	events

20

CT:	Congestion	tracking	in	data-plane

How	does	it	work?
• During	congestion,	switch	takes	“snapshot”	of	every	packet
• Snapshot	contains	packet	ID	and	packet	metadata	for	analysis

How	is	it	used?
• Detect	congestion	incidents	and	identify	events	leading	to	congestion
• Identify	culprit	that	is	causing	queue	builds-up
• Identify	persistent	congestion	and	transient	congestion

21

L4LB:	Add	L4	load	balancing	to	every	switch

How	does	it	work?
• Ensure	per-connection	consistency:	

Forward	every	packet	in	a	connection	to	the	same	DIP
• Switch	maintains	per-connection	 state	(typically	five	million	or	more)

How	is	it	used?
• Cost	saving:	Eliminate	thousands	of	servers

P4	prototype	available	from	demo	at	the	2nd P4	workshop

SW-IP à DIP

Switch

VIP : {DIP-pool}

CIP à VIP

payload
CIP à VIP

payload

22

Custom	traffic	monitoring	and	filtering

General-purpose	stateful	memory	&	Custom	hashing
à Explosion	of	probabilistic	traffic	monitoring	and	filtering	schemes

Bloom-filter-based	whitelist
• For	example,	remember	O(107)	items	with	very	low	false	positives

•

Heavy-hitter	detection	via	count-min	sketch
• For	example,	track	the	frequency	of	O(107)	items

Better	NetFlow (a.k.a.	“FlowRadar”,	NSDI’16)
• Switches	encode	flow-sets	using	Invertible	Bloom	Filter	and	export	the	encodings	
frequently	to	monitoring	servers	-- once	every	few	msec

• Monitors	decode	the	encondings	network	wide	and	produce	NetFlow-like	records

23

Dynamic	source	routing
Forward	packets/flowlets/flows	 based	on	current	path	conditions

• Path	condition:	Link	utilization,	queue	depth,	hop	latency,	end-to-end	latency,	etc.
“HULA”	at	SOSR’16

Sender
Host/ToR

Intermediate
SW

Intermediate
SW

Receiver
Host/ToR

pkt

path1 = 50%
path2 = 30%
path3 = 60%
path4 = 40%

feedback

best = path2

4. Export hop-level link utilization

1. Keep track of path status
2. Detect flowlets and manage their state
3. Assign best paths to flowets

5. Generate path-utilization feedback

24

Scalable	high-frequency	OAM
• Offload	BFD	entirely	to	data	plane	using	programmable	packet	generator	+	stateful memory
• Switches	maintain	many	thousands	of	BFD	sessions	with	msec-level	hello	frequency

Ingress Pipe

Buffer
Manager

Egress PipePktGen

[Session-State-Table]
reads {
if	RX:	my	dsc
if	TX-dummy:	your	dsc	

}
action {	

• if	RX,	 reset	 counter	 to	zero
• if	TX-dummy,	 increment	 counter	 and	

test
then,	 drop.

}

[Session-ID-Table]
reads {
bfd_session_id

}
action {
set	the	 following	 fields

• src	and	dst	 address
• src	and	dst	 port
• my	discriminator	 (dsc)
• your	discriminator	 (dsc)

}

MAC

25

Various	types	of	congestion	control
Explicit	congestion-control	protocols	running	in	switches

• RCP,	XCP,	TeXCP,	etc.

Hybrid	congestion	control	– or	“Timely++”
• Switches	insert	ID	and	queuing	latency	in	every	packet
• Sender	decides	best	rate	for	each	connection

Host-to-dst-ToR admission	control	(network-level	VoQ)
• Last-hop	ToR enforces	“hose-model”	traffic	via	admission	control
• High	throughput,	low	latency,	and	(nearly)	lossless	without	pausing
• Enhanced:	hosts	expose	more	info	to	network,	such	as	traffic	type,	
message	size,	deadline,	etc.

26

Flowlet Switching

Flowlet	Table
(Register	Array)

last time flowlet id

82019445 4

82028039 13

… …

81084924 29

82148703 7

packet	hdr	&	
metadata

Hash(e.g., 5-tuple) ECMP	and	LAG
Next hop and port selection

using
hash of 6-tuple:

5-tuple + flowlet id

if	(current_time	– last_time	>	timeout)	{
flowlet_id	+=	1;

}
last_time	=	current_time;

Flowlet Switching
Flowlet	Table
(Register	Array)

last time flowlet id

82019445 4

82028039 13

… …

81084924 29

82148703 7

packet	hdr	&	
metadata

Hash(e.g., 5-tuple)
ECMP	and	LAG

Next hop and port selection
using

hash of 6-tuple:
5-tuple + flowlet id

/* data structure */
register flowlet_lasttime {

width : 32;
instance_count : 8192;

}

register flowlet_id {
width : 16;
instance_count : 8192;

}

Flowlet Switching
Flowlet	Table
(Register	Array)

last time flowlet id

82019445 4

82028039 13

… …

81084924 29

82148703 7

packet	hdr	&	
metadata

Hash(e.g., 5-tuple)

ECMP	and	LAG
Next hop and port selection

using
hash of 6-tuple:

5-tuple + flowlet id#define FLOWLET_MAP_SIZE 13 // 8K table size
#define FLOWLET_INACTIVE_TOUT 50000 // 50ms

/* hash input fields */
field_list l3_hash_fields {

// 5 tuple
}

/* hash function */
field_list_calculation flowlet_map_hash {

input {
l3_hash_fields;

}
algorithm : crc16;
output_width : FLOWLET_MAP_SIZE;

}

Flowlet Switching

Flowlet Table
last time flowlet id

82019445 4

82028039 13

… …

81084924 29

82148703 7

packet	hdr	&	
metadata

Hash(e.g., 5-tuple)
ECMP	and	LAG

Next hop and port selection
using

hash of 6-tuple:
5-tuple + flowlet id

table flowlet {

actions { lookup_flowlet_map; }

}

control ingress {

apply(flowlet);
apply(ecmp_group);
apply(ecmp_nhop);
apply(forward);

}

action lookup_flowlet_map() {

modify_field_with_hash_based_offset(ingress_metadata.flowlet_map_index, 0,

flowlet_map_hash, FLOWLET_MAP_SIZE);

….

add_to_field(ingress_metadata.flowlet_id,
ingress_metadata.flow_ipg > FLOWLET_INACTIVE_TOUT ? 1 : 0)

register_write(flowlet_id, ingress_metadata.flowlet_map_index,

ingress_metadata.flowlet_id);

}

Heavy-Hitter	Detection	 (HHD)

Heavy	hitters	(a.k.a elephant	flows)
- A	small	number	of	flows	(hundreds	or	thousands)	contribute	most	network	traffic
- Often	transient,	hard	to	proactively	install	counters
- Major	source	of	network	congestion
- Penalize	delay-sensitive	mice	flows

Instant	HHD	in	switch	dataplane
- Detect	every	millisecond	
- Useful	in	DC	networks	with	small	RTT	and	shallow	buffer
- Counting,	detection,	reaction	all	at	line-rate,	in	dataplane

31

Probabilistic	data	structure:	counting	Bloom	filter

Counting
- Each	flow	computes	multiple	hash	indices,	adding	packet	size	to	the	indexed	locations	

of	counter	array
- Flows	can	hash-collide,	adding	to	a	common	counter	instance

Detection
- Take	minimum of	the	counter	values	and	compare	to	threshold
Reaction
- Dynamic	de-prioritization,	metering,	etc

Heavy-Hitter	Detection	with	count-min	sketch

32

0 100 0 100 0 300 0 0 200 200

f1 f2

+100 +200

/* data structure */
register counter_array1 {

width : 32;
instance_count : 2048;

}
register counter_array2 { ... }

/* hash input fields */
field_list l3_hash_fields {

ipv4.srcAddr;
ipv4.dstAddr;
ipv4.protocol;
tcp.srcPort;
tcp.dstPort;

}

/* hash functions */
field_list_calculation hash1 {

input { l3_hash_fields; }
algorithm : crc16;
output_width : 11; // 11=log2(2048)

}
field_list_calculation hash2 { ... } // different algoritm

HHD.p4	(two	hash-way	 example)

33

/* metadata variables */
header_type hhd_metadata_t {

fields {

index1 : 11;

index2 : 11;

count_val1: 32;

count_val2: 32;

}

}

metadata hhd_metadata_t md;

/* counting: counter read/update/write */
action count1() {

/* compute hash index into md.index1 */

modify_field_with_hash_based_offset(
md.index1, 0, hash1, 11);

register_read(md.count_val1, counter_array1, md.index1);

add_to_field(md.count_val1, ipv4.len);

register_write(counter_array1, md.index1, md.count_val1);

}

action count2() { ... }

action count_all() {

count1();

count2();

}

/* table to run action */
table counting_table {

actions { count_all; }
size : 1;

}

/* control function */
control ingress {

apply(counting_table);

/* detection & reaction */
/* if every count_val is larger than threshold, deprioritize */
if (md.count_val1 > THRESHOLD and md.count_val2 > THRESHOLD) {

apply(deprioritization_table);
}

}

HHD.p4

34

Key-Value	Stores	in	P4

• SwitchKV:	Key-value	load-balancer	and	cache	(e.g.	for	memcache)
[NSDI	2016]

• Paxos in	P4:	Paxos leadership	election	algorithm	
[ACM	CCR	2016]

User-programmable
Software	Switches

A	few	choices

• Hand-coded	C	in	user-space	or	kernel
• eBPF in	kernel
• User	space	C	with	DPDK
• P4	compiled	to	user-space	or	kernel

Converged	approach:	P4-eBPF	and	eBPF-P4	cross	compilers

PISCES:	Protocol	Independent	Software	Switch
Mohammad	Shahbaz,	Sean	Choi,	Jen	Rexford,	Nick	Feamster,	Ben	Pfaff,	NM
Sigcomm 2016

Problem:	Adding	new	protocol	feature	to	OVS	is	complicated
• Requires	domain	expertize	in	kernel	programming	and networking
• Many	modules	affected
• Long	QA	and	deployment	cycle:	typically	9	months

Approach:	Specify	forwarding	behavior	in	P4;	compile	to	modify	OVS

Question:	How	does	the	PISCES	switch	performance	compare	to	OVS?

Native	OVS	expressed	in	P4

VLAN	Ingress	
Processing	

Match:	ingress_port	
							vlan.vid	
Action:	add_vlan	
								no_op	

MAC	
Learning	

Match:	eth.src	
Action:	learn	
								no_op	

Switching	

Match:	eth.dst	
							vlan.vid	
Action:	forward	
								bcast	

Routing	

Match:	ip.dst	
Action:	nexthop	
								drop	

Routable	

Match:	eth.src	
							eth.dst	
							vlan.vid	
Action:	no_op	

ACL	

Match:	ip.src,ip.dst	
							ip.prtcl,	
							port.src,port.dst	
Action:	no_op	
								drop	

VLAN	Egress	
Processing	

Match:	egress_port	
							vlan.vid	
Action:	remove_vlan	
								no_op	

route	

Complexity	Comparison

40x	reduction	in	LOC
20x	reduction	in	method	size

Code	mastery	no	 longer	 needed

User-programmable	Software	Switches

1. Open-source	behavioral	model	and	compiler	at	P4.org
2. OVS:	Talk	by	Shahbaz later	today…	
3. VPP:	Work	in	progress

How	to	learn	more	about	P4

P4.org	– P4	Language	Consortium

P4.org	– P4	Language	Consortium

Maintains	the	P4	language	spec
Apache	2.0	licenses

Github for	open-source	tools
• Reference	P4	programs
• Compiler
• P4	software	switch
• Test	framework
• Apache	 license

• Developers	Day	on	Wednesday	at	Stanford!
• Tutorials	at	conferences	 (e.g.	Sigcomm,	ONS)
• Annual	P4	Workshop	in	May/June
• Boot	camps	for	PhD	students

Open	 for	 free	to	any	individual	 or	
organization

Systems

P4.org	Members

Academia/
Research

Targets

Operators/
End	Users

Original	P4	Paper	Authors:

Solutions/
Services

Five	things	on	the	horizon	for	
P4…..

Separation	of	language	
from	architecture1

Reference	architectures	 for	
portability2

Extend	P4	to	express	packet	
scheduling	and	QoS disciplines3

Extend	P4	to	express	 stateful
processing4

Cross-compilers	 to-from	BPF5

A	long-term	aspiration

NICNIC

P4	Compiler

P4	
code

P4	
code

P4	
code

P4	
code

P4	
code

P4	
code

P4	
code

Automatically	partition	
and	generate	code

Declared	network	forwarding	behavior

OVS OVS

Thank	you

