
Sylvain Baubeau
Red Hat

Skydive, a Real-Time Network Analyzer

Why ?

 SDN is complex

 Highly dynamic

 Lack of open source tooling for troubleshooting

Goals

 SDN agnostic

 Real-time / post-mortem network analysis framework

 Lightweight, easy to deploy

Overview

 Distributed
 Single binary
 Agents

 Capture topology and flows
 Forwards to the analyzers

 Analyzers
 Aggregate and store topology and flows
 Serve API

Topology probes

 OVS objects
 bridge, port, interfaces
 using OVSDB

 Network objects
 Interfaces, bridges, bonds, VLAN, …
 Properties (MAC, IP, MTU, Statistics, ...)
 Network namespaces
 Static objects

Topology probes

 External connectors
 Docker
 OpenStack Neutron
 OpenContrail

 Create a graph :
 Nodes : interfaces, network objects with metadata
 Links : L2, ownership, membership, ...

Topology query

 Graph engine
 Event based

 Graph listener through WebSocket (agents, Web UI, your
software)

 Gremlin like query language
 Full history

Topology query

 $ skydive client topology query -q 'G.V().Has("Type",
"ovsbridge").Out().Out().Has("Name", Without("br-int"))
[{ "Host": "localhost.localdomain",
 "ID": "a190409e-f76e-4c8f-55b9-985e662a37c0",
 "Metadata": {
 "Driver": "veth",
 "IfIndex": 168,
 "MAC": "3e:88:b9:65:04:7e",
 "MTU": 1500,
 "Name": "vm1-eth0",
 "State": "UP",
 "Type": "veth",
 "UUID": "b6e9bf79-9b58-4b65-800e-1ddf9909d9dc" }}]

Topology probes

 2 VMS with the Skydive agent
 On each VM

 2 physical interfaces connected to a TOR
 A network namespace
 A pair of veth
 Connected to an OVS bridge « br-int »
 A GRE tunnel between the nodes

What we call a flow

 Layers :
 Link, Network, Transport

 Metrics (packets, bytes)
 Source and destination
 ID, Tracking ID
 Encapsulation support (GRE, VXLAN, MPLS)

Flow capture

 Captures
 OVS (sFlow)
 AFPackets
 libpcap
 eBPF
 NDPI

Flows

• Defined capture using the Skydive API
• Traffic is captured on the agent
• Stored into a local flow table
• Push metrics about live and updated flows to the

analyzer
• Map endpoints to known interfaces
• Stored into database

Flows

• Still the same Gremlin language
… and the history

• Examples of Gremlin queries
 g.Flows().Has(‘TrackingID’, ‘123’).Hops()
 g.Flows().Has(‘Network.A’, ‘192.168.0.1’).Hops()
 g.Context(“An hour ago”).V().Has(‘Name’, ‘br-

int’).Flows().Count()

Use cases

• Validation
• Troubleshooting
• Detection network issues

 Packet loss
 Fragmentation
 Bad performance, congestion points

• Post mortem analysis

Use cases

• Monitoring
 Grafana plugin
 Alarming

• Capacity planning
 Schedule services at the best place

• Billing

Flow demo

 Same topology than the previous demo
 GRE tunnels
 Create capture points
 Generate traffic
 Follow traffic in the tunnel
 Skydive analyzer on my laptop with Elasticsearch

Flow demo

 Same topology than the previous demo
 GRE tunnels
 Create capture points
 Generate traffic
 Follow traffic in the tunnel
 Skydive analyzer on my laptop with Elasticsearch

Quickstart

• Executable
 # skydive allinone

• Docker
 docker-compose up

• Kubernetes
 kubectl create -f contrib/kubernetes/skydive.yaml

• Devstack plugin

Community

 Apache License

• https://github.com/skydive-project/skydive

• Written in Go

• (Good?) Documentation

https://github.com/skydive-project/skydive

Questions ?

 IRC : #skydive-project @ freenode.net

• Mailing list : skydive-dev@redhat.com

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20

