PISCES: A P4-Enabled OVS

Muhammad Shahbaz, Cian Ferriter
Princeton, Intel
PISCES: A P4-Enabled OVS
Internal Architecture of OVS

OVS

DPDK
Internal Architecture of OVS
Internal Architecture of OVS
Internal Architecture of OVS
Internal Architecture of OVS
Road to Protocol Independence

Domain-Specific Language

Parser Match-Action Pipeline

Compile

OVS

Parser Match-Action Pipeline

DPDK
Road to Protocol Independence

P4 is an open-source language.[1]

Describes different aspects of a packet processor:
- Packet headers and fields
- Metadata
- Parser
- Actions
- Match-Action Tables (MATs)
- Control Flow

[1] http://www.p4.org
Road to Protocol Independence

P4 [1]

Parser → Match-Action Pipeline → Compile → Native OVS

OVS

Parser → Match-Action Pipeline

DPDK

341 lines of code

14,535 lines of code

Road to Protocol Independence

P4[1]

Compile

Performance Overhead!

OVS Forwarding Model

OVS

P4 Forwarding Model

http://www.p4.org

DPDK

P4 Forwarding Model (Post-Pipeline Editing)
OVS Forwarding Model

Ingress -> Packet Parser -> Match-Action Cache

Match-Action Tables

Egress

Flow Rule

Miss

Slow-path

Fast-path
OVS Forwarding Model
OVS Forwarding Model (Inline Editing)

[Diagram showing the OVS forwarding model with Ingress, Packet Parser, Match-Action Cache, and Egress paths.

- **Ingress**
- **Packet Parser**
- **Match-Action Cache**
- **Egress**

Pathways:
- **Slow-path**
- **Fast-path**
PISCES Forwarding Model (Modified OVS)

- Supports both editing modes:
 - Inline Editing
 - Post-pipeline Editing
PISCES: Compiling P4 to OVS
PISCES Forwarding Model (Modified OVS)
PISCES Forwarding Model (Modified OVS)

- Ingress Packet Parser
- Checksum Verify
- Microflow Cache
- Checksum Update
- Packet Deparser
- Egress

Match-Action Tables

Megaflow Cache

Slow-path

Fast-path
PISCES Forwarding Model (Modified OVS)
Naïve Compilation from P4 to OVS (L2L3-ACL)

Performance overhead of ~ 40%
Causes of Performance Overhead

CPU Cycles per Packet

Ingress
- Packet Parser
- Checksum Verify
- Megaflow Cache
- Checksum Update
- Packet Deparser
- Egress

Cache Misses

Match-Action Tables
Cause: CPU Cycles per Packet

L2L3-ACL (CPU Cycles for a 64 Byte Packet)

Throughput (Gbps)
Factors affecting CPU Cycles per Packet

a. Extra copy of headers
b. Fully-specified Checksum
c. Parsing unused header fields

and more ...
Different Optimizations for L2L3-ACL

L2L3-ACL (CPU Cycles for a 64 Byte Packet)

Throughput (Gbps)
Optimized Compilation from P4 to OVS (L2L3-ACL)

Performance overhead of < 2%
Cause: Cache Misses

- 3500+ Cycles (50x Cache hit)
- Throughput < 1 Mpps

Diagram:
- **Ingress**
 - Packet Parser
 - Checksum Verify
 - Match-Action Cache
 - Checksum Update
 - Packet Deparser
- **Egress**
Factors affecting Cache Misses

a. Entropy of packet header fields

b. Stateful operations in the match-action cache (or fast path).
PISCES Forwarding Model (Modified OVS)
PISCES Forwarding Model (Modified OVS)
Internals of the Microflow Cache

Packet in → Extract Fields → Hash Fields → Perform Lookup → Packet out

P4 File

to Megaflow Cache

Hit / Miss

Microflow Cache
Performance with the Microflow Cache

Phy-Phy, L3 Router Case, 64B

![Chart showing throughput comparison between OVS and PISCES. OVS has a throughput of 7.728 Gbps, while PISCES has a throughput of 6.464 Gbps.](image)
Cause of Performance Degradation

<table>
<thead>
<tr>
<th>Cacheline</th>
<th>64 Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Metadata</td>
</tr>
<tr>
<td>1</td>
<td>Metadata</td>
</tr>
<tr>
<td>2</td>
<td>IPv4 (1st 16Bytes)</td>
</tr>
</tbody>
</table>

Simplified “flow” Structure
Performance with the Microflow Cache

Phy-Phy, L3 Router Case, 64B

Throughput (Gbps)

7.728 8.198

OVS PISCES
Varying the Number of Hash Fields

Throughput (Gbps)

- L2 Address (2 Fields): 8.682 Gbps
- Five Tuple (5 Fields): 8.198 Gbps
Questions?
Disclaimers

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. **No computer system can be absolutely secure.** Check with your system manufacturer or retailer or learn more at [intel.com].