
FAASTED, KEYLESS
ENTRY TO MULTI-
HOST DOCKER

Gabe Beged-Dov Prismod Systems, LLC

Background
◦ Docker is developing tech in the FAAS/Serverless space.
◦ https://github.com/bfirsh/serverless-docker

◦ FAASted (Function as a Service Trampoline Extension to Docker) is a vehicle for
investigating alterative approaches by focusing on OVN and any necessary extensions

◦ FAASted uses the server side of Wepoq-OVN (modified for absence of managed
clients) and a form of socket activation that may provide benefits over the current
Docker approach

Overview
◦ OVN already provides explicit multi-host

docker support via CNM plugin.
◦ cluster KV db is required to store state which

OVN doesn’t need.

◦ Can run Docker in single node mode by
connecting docker0 to br-int

◦ stable naming hierarchy for discovery
◦ Docker/Kubernetes as conceptual

underlay for Wepoq-OVN
◦ “socket activation” and caching to speed

up FAAS launch

◦ Mismatch in Docker and Wepoq-OVN
network topologies
◦ from within

◦ ovn-kubernetes (CNI plugin)
◦ ovn-docker (CNM plugin)

◦ from without
◦ Wepoq L4 tagging interlay
◦ OVN VLAN tagging interlay
◦ OVN tunneling overlay
◦ next-to-lay

◦ a second vif in each container/pod for
Wepoq-OVN

◦ Current approach is 2nd vif on server side
◦ ”next-to-lay” endpoint attachment

triggered by docker events and labels, not
plugin

Naming/Dispatch Hierarchy
ovn-apps.com (public DNS)

ns

ctl

srv

ovn-vote

ctl

srv

vote

ctl

srv

srv

result

ctl

srv

srv

db

ctl

srv

srv

ovn-apps.com/vip.srv.ctl.ns

ovn-apps.com/vip.srv.ctl.ovn_vote.ns

ovn-apps.com/vip.srv.ctl.vote.ovn_vote.ns

ovn-apps.com/vip.srv.ctl.result.ovn-vote.ns

ovn-apps.com/vip.srv.ctl.db.ovn-vote.ns

Dispatch (part 1)
◦ ovn-apps GW receives the HTTP get request
◦ GW rewrites
◦ ovn-apps.com/vip.srv.result.ovn-vote.ns to
◦ vip.srv.result.ovn-vote.ns.ovn.wepoq.net

◦ OVN DNS resolves it to the VIP ip on the srv.result LS

◦ The IP is load balanced across three servers on the srv.result LS

◦ The packet is dispatched to the IP of s3.result for this example
◦ In the egress host chassis, kernel upcalls the socket listener of container attached to

s3.result

Dispatch (part 2)
◦ FaaSTeD uses a split container model
◦ In FAAS, the container should only run on-demand, but then how do you make it start fast?
◦ Docker uses a dispatcher container (entrypoint) that dispatches based on the URL path

◦ The services are not 1st class in that they are not visible on the network at layer 3

◦ FaaSTed uses a stub container that listens on the IP
◦ accepts the socket
◦ starts a pre-warmed implementation container
◦ passes the accept socket via the Linux ancillary message feature of Domain sockets

