

CXL, SmartNICs and OVS: a
paradigm change?

Alejandro Lucero
alucero@os3sl.com
OVSCON
December 2023

Disclaimer

I work for AMD but I do not represent AMD´s view
in this presentation nor any AMD´s roadmap
regarding CXL or SmartNICs. My goal is to
discuss my vision of current SmartNICs start of
the art regarding potential CXL uses.

CXL, SmartNICs and OVS: a paradigm change?

Agenda

1. Introduction
2. SmartNICs with MATs … and DRAM
3. Slow-fast paths: the Linux/OVS/Openflow way
4. CXL into the picture
5. Counters and Multitenant Openflow
6. Conclusions

Agenda

1. Introduction
2. SmartNICs with MATs … and DRAM
3. Slow-fast paths: the Linux/OVS/Openflow way
4. CXL into the picture
5. Counters and Multitenant Openflow
6. Conlusions

CXL, SmartNICs and OVS: a paradigm change?

1. Introduction

CXL brings sharing memory efficiently between Host CPUs and
high performance devices (initially targeting GPUs).

PCIe devices have “shared” memory with the Host through PCI
BARs windows but lacking the performance and mainly the
coherency required.

CXL can be used in the datapath … and in the control path.

CXL, SmartNICs and OVS: a paradigm change?

1. Introduction

Being part of SmartNIC projects in two different companies supporting
OVS-TC offload.

And the control path through the kernel TC (and conntrack) not
progressing too much. Does it need to?

(My point) Massive virtualization can not rely on TC: the rate of change
has been ignored.

Latencies due to a far from optimal software datapath plus latencies due
to how the hardware offload is done imply more cpu cycles “stolen” from
VMs.

CXL, SmartNICs and OVS: a paradigm change?

1. Introduction

I could not help thinking all this just can not efficiently work in real
massive virtualization systems.

Improvements can be done but when you need to go to the Moon,
changing a bike by a car does not help too much.

Then CXL for the Control Path popped into my head: it just made sense.

CXL, SmartNICs and OVS: a paradigm change?

2. SmartNICs, MATs and DRAM

The SmartNIC type I want to talk about is the one used for improving
networking in virtualization.

VMs talk straight to the NIC/HW (SRIOV, VFs, IOMMU, VDPA, …)

Packets sent by VMs and packets coming from the wire are first handled
by the NIC using Match and Action Tables (MATs). Example: a packet
matching a rule will end up being redirected to a specific VM and the
tunnel header removed. This is the hardware datapath.

A packet not matching any rule has a default action: drop ... or send to
the Host. This is the software datapath.

CXL, SmartNICs and OVS: a paradigm change?

2. SmartNICs, MATs and DRAM

MATs functionality are more efficiently implemented with HW xCAMs
where the matching can be performed against all the rules in a MAT table
in parallel.

This parallelism has limitations due to power requirements so the MATs
have usually maximum sizes far from what massive virtualization
requires.

A DRAM is used where rules and flows can be used in the millions.

CXL, SmartNICs and OVS: a paradigm change?

2. SmartNICs, MATs and DRAM

CXL, SmartNICs and OVS: a paradigm change?

2. SmartNICs, MATs and DRAM

How are they
populated?

CXL, SmartNICs and OVS: a paradigm change?

3. SW/HW datapaths: The OVS/Linux way

Does the SW datapath make sense? Let´s assume so:

✔ Openflow rules: proactive vs reactive. Rate of change?

✔ Slow path (Host) having more resources than HW (more rules/flows
handled).

✔ Supporting those rules/actions (and protocols) the HW can not deal
with.

✔ Connection tracking based on software (Linux kernel conntrack).

CXL, SmartNICs and OVS: a paradigm change?

For the sake of the discussion, the SW datapath is the kernel OVS-TC.

Packets are handled by the kernel Traffic Control (TC) which has
matching and action capabilities (TC Flower).

If no match there, the OVS kernel switch sends the packet to the OVS
userspace component: this is the slow path.

A new TC rule will be installed for processing this and related packets
(flow) in the future. This can imply to offload that rule to the NIC.

3. Slow/Fast datapaths: The OVS/Linux way

CXL, SmartNICs and OVS: a paradigm change?

With conntrack, the SW datapath is still necessary after the HW gets the
rule.

The HW rule will need the connection state related to the packet: the
packet will be sent through the SW datapath.

The kernel TC rule will create the connection state and it will be offloaded
once established.

This is always reactive and the expected rate of change far higher than
rules/actions updates.

3. SW/HW datapaths: The OVS/Linux way

CXL, SmartNICs and OVS: a paradigm change?

Why using kernel TC for the SW datapath?

First OVS in HW implementations had private per-vendor solutions for
offloading, but unlike other similar cases, there was not convergence nor
a Linux kernel configuration option selecting one …

The kernel Traffic Control was proposed because it had match/action and
it could be extended (TC Flower).

Does it work?

3. SW/HW datapaths: The OVS/Linux way

CXL, SmartNICs and OVS: a paradigm change?

TC was designed at a time where virtualization was mainly a mainframe
solution (Dad, what´s a mainframe?) ...

At a time where ATM networks seemed the future …

And when processing packet by cpus was not a big problem. The
performance gap has significantly increased: less cpu cycles per packet
for dealing with increasing network bandwidth.

So it can hardly (efficiently) work for massive virtualization where the SW
datapath is not just the poor man but one important key behind
performance.

3. SW/HW datapaths: The OVS/Linux way

CXL, SmartNICs and OVS: a paradigm change?

TC problems:

➔ TC Qdiscs can not be updated in parallel (not needed because it is the
control path …).

➔ TC rules are matched against sequentially.
➔ Parsing and matching done per rule.
➔ TC syntax gap: Openflow → TC → HW specs
➔ TC ossification (was not a HW thing?) … Here it comes P4.
➔ Conntrack: Hash Tables! … but processing linked to TC processing

(flow connection state as a matching field).

3. SW/HW datapaths: The OVS/Linux way

CXL, SmartNICs and OVS: a paradigm change?

3. SW/HW datapaths: The OVS/Linux way

P4 as the frontend for the software datapath. Hardware and software
datapaths from same “source”.

P4 software backend? eBPF? I really do not care as long as the
implementation is overcoming current TC problems: optimization for
properly supporting the massive virtualization case.

I do care about the control data representation, data access, data
updates.

Could not the slow path and the fast path, coming from same source,
share the same data? ...

CXL, SmartNICs and OVS: a paradigm change?

TC/conntrack offload problems:

➔ TC rule offload synchronously done when rule update through specific
driver code. But TC Qdiscs can not be updated in parallel ...

➔ Driver needs to check if the rule/actions are supported.
➔ Driver needs to translate the TC rules to the HW intrinsics.
➔ The rule needs to be sent to the HW (datapath, control channel)
➔ HW Acking (sync/async). Identifier.
➔ MATs population: When is the rule really seen by the switching logic?

How long is the latency? Is it deterministic?

3. SW/HW datapaths: The OVS/Linux way

CXL, SmartNICs and OVS: a paradigm change?

TC/conntrack offload problems:

➔ Asynchronous conntrack flow offload when established. Kernel
kworkers used … one work per flow direction!

➔ Kworker executing specific driver code. When?
➔ Driver checks if the conntrack state is supported.
➔ Driver needs to translate the flow to the HW intrinsics.
➔ The flow state needs to be sent to the HW (datapath, control channel)
➔ HW Acking (sync/async)
➔ When is the flow state really seen by the switching logic? How long is

the latency? Is it deterministic?

3. Slow/Fast paths: The OVS/Linux way

CXL, SmartNICs and OVS: a paradigm change?

TC/conntrack offload problems:

● Driver involved: sync/async
● Data “duplicated”: updated

twice*.
● Extra Host cpu cycles
● Non deterministic
● Specific HW design
● …
● Will not the data end up in

device DRAM?

* Drivers keep rules data, so it is really triplicated

CXL, SmartNICs and OVS: a paradigm change?

TC/conntrack offload problems:

➔ Any added latency implies subsequent flow packets going through the
SW datapath. More SW datapath implies more latency …

➔ Rate of change! It is not just about adding rules but also about
removing them based on traffic (reactive solution).

➔ With conntrack flows state this is just more critical … and demanding.

3. SW/HW datapaths: The OVS/Linux way

CXL,SmartNICs and OVS: a paradigm change?

What about a Control Path where:

1) Updates would be a matter of CPU writes to memory addresses. No
driver intervention for offloads.

2) A DRAM memory inside the SmartNIC backing those memory
addresses. Standarization at the DRAM level: HW intrinsics per vendor
but after accessing DRAM by the HW logic.

3) The CPU able to read such a memory as part of code execution: the
SW datapath data.

4. CXL into the picture

CXL, SmartNICs and OVS: a paradigm change?

TC/conntrack offload with CXL:

● Driver not involved.
● Shared data: updated once.
● No Extra Host cpu cycles
● CXL protocol
● …
● Data ends up in device

DRAM, and Host CPUs using
it (CXL coherency).

● Host DRAM extending
functionality: supporting more
rules/flows.

CXL, SmartNICs and OVS: a paradigm change?

Standarizing DRAM contents

1) Translating to HW intrinsics up to the HW no the Host (cpu cycles).

2) In a ideal P4 scriptable datapath, this should not be needed: how the
data is represented defined by the P4 source.

3) The first CXL-based solutions would likely require translation at the
Host level as part of the transition to the full solution (or just as an
option supported or not by the SmartNIC).

4. CXL into the picture

CXL, SmartNICs and OVS: a paradigm change?

SW datapath using same CXL-backed data.

1) CXL coherency makes this possible. Type 2: cpu reads implying cpu
cache misses reading from CXL memory. Slower slow datapath?

2) Saving memory (Type 2): just updates to one memory and based on
CPU writes.

3) A scriptable slow datapath promises same functionality in both, the
software and hardware. Can the access to the CXL memory be
“possible”? Cuckoo hashing? Multiple hashes? Dynamic size hashes?

4. CXL into the picture

CXL, SmartNICs and OVS: a paradigm change?

Orthogonality based on just Host CPU reads/writes brings new possibilities.

1) Counters, which are hard to cope with when thousands/millions of
entries, can be read on demand instead of sending updates periodically.
Coherency helps here … where it should be enforce at the time of reads.
Granularity?

2) Users could read counters related to their specific rules/flows.

3) Users could have their own CXL-memory range ...

5. Counters and openflow multitenancy

CXL, SmartNICs and OVS: a paradigm change?

Openflow and Multitenancy:

● Nowadays there is just one Openflow controller.

● It is the Host/cloud provider accessing the controller and updating
rules/flows on behalf of the client.

● Multitenancy: each client owns his control path. Security, confidentiality.
I do access my Openflow controller, and I do update my control path
(CXL!).

5. Counters and openflow multitenancy

CXL, SmartNICs and OVS: a paradigm change?

Openflow and Multitenancy: the Holistic Approach

● Switches and endpoints(SmartNICs) offering this control.
● Two levels: cloud provider and tenants.
● Cloud provider: here is your (virtual) network. This is the tunneling. This

is your control path (CXL memory range).
● Hardware: CXL and SVE*-like (Host and inside the SmartNIC).
● Tenant: None sees what I do. None can change my control path.
● QoS and counters could benefit from same orthogonality.

5. Counters and openflow multitenancy

* SVE (AMD), SGX (Intel), CCA (ARM)

CXL, SmartNICs and OVS: a paradigm change?

5. Counters and openflow multitenancy

All performed by the Cloud
provider!

CXL, SmartNICs and OVS: a paradigm change?

Openflow and Multitenancy: the Linux way. How?

● SW datapath executed on behalf of a client (specific context). When?
● Cpu cycles and contention in those cpus allocated to the same client.
● CXL memory: only ranges owned by the client.
● Can we do that? Per client context inside the kernel? SVE applied to

those kernel contexts? Userspace?
● Same contexts are needed inside the NIC
● …
● No trivial, but possible. If it is really needed, CXL can help.

5. Counters and openflow multitenancy

CXL, SmartNICs and OVS: a paradigm change?

CXL is going to be disruptive.

Things easily done through CPU writes. Offloads!

It can help with the Control Path in massive virtualization and reinforce
the scriptable software datapath approach.

It can help achieving the dream of full virtualization: multitenancy with
security and confidentiality.

6. Conclusions

CXL, SmartNICs and OVS: a paradigm change?

Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

