Save power with PMD thread load based sleeping

Open vSwitch

Kevin Traynor ktraynor@redhat.com

Introduction

- OVS userspace PMD threads
- System configuration
- Options for doing less work
- Tuning
- PMD load based sleeping operation
- Testing

OVS-DPDK PMD thread

- 1:1 on isolated core
- Datapath processing
- Poll Rx queues
 - Runs in a loop in userspace polling ports for packets
 - Calls Rx function for DPDK NIC and vhost ports using DPDK drivers
- Processes packets
 - Classification, actions, output
- Typical type of behaviour an application using DPDK
 - High throughput
 - Low latency
 - High cpu cycles usage

Stop/Slow Rx queue polling == Save power ?

- Isolate PMD thread cores
- C-states Processor Operating States
 - C0 (full power) down to C6 (Deep sleep state)
- Enable at BIOS level

- Enable with system tuning software (tuned)
 - cpu-partitioning-powersave
 - tuned v2.20.0
- What about the other cores ?
 - e.g. 28 cores in a socket
 - 2 for OS
 - 4 for PMDs
 - 22 cores doing what ?

How stop/slow polling ?

- Sleeping
 - Sleep between polls
 - Agnostic to device type
 - Simple implementation
 - if no/low packet received sleep in polling loop

- Wakes up when no traffic
- Gradual and adaptive to packet rate

- NAPI
 - Change device into interrupt mode
 - Each device driver required to support interrupt mode
 - More complex implementation
 - Different OVS code needed for different device types

i.e. DPDK NIC using Ethdev API and DPDK vhost using vhost lib API

- Does not wakeup when no traffic
- Binary operation interrupt or polling
 - Threshold for enabling ?
 - Might not save power during low traffic

How long should we sleep for?

- What happens if a packet arrives during a sleep ?
 - It must wait until after the sleep
- Trade-off between longer sleep and greater wakeup packet latency
 - Sleep longer
 - Do less work when no packets => implies more power saving
 - Longer wakeup packet latency
 - Sleep shorter
 - Do more work when no packets => implies less power saving
 - Shorter wakeup packet latency
- Max sleep time tunable
 - pmd-sleep-max (pmd-maxsleep in OVS 3.1) e.g. max sleep 100 uS
 - \$ ovs-vsctl set Open_vSwitch . other_config:pmd-sleep-max=100
- Also need to consider Processor C-State wakeup times
 - Check /sys/devices/system/cpu/cpu8/cpuidle
 - cpupower -c 8 idle-info | grep -e ^C -e Latency

PMD load based sleeping - Low traffic rate

- \$ ovs-vsctl set Open_vSwitch . other_config:pmd-sleep-max=50
 - poll Rx queue. Get 32 packets. Process packets. No Sleep.
 - poll Rx queue. Get 2 packets. Process packets. Sleep 1 uS.~
 - poll Rx queue. Get 0 packets. Process packets. Sleep 2 uS

- ...

- poll Rx queue. Get 5 packets. Process packets. Sleep 50 uS
- poll Rx queue. Get 5 packets. Process packets. Sleep 50 uS
- poll Rx queue. Get 5 packets. Process packets. Sleep 50 uS
- poll Rx queue. Get 5 packets. Process packets. Sleep 50 uS
- poll Rx queue. Get 32 packets. Process packets. No Sleep.

Transition to max sleep

max sleep steady state

Transition out of sleep

PMD load based sleeping - Low traffic rate

- \$ ovs-vsctl set Open_vSwitch . other_config:pmd-sleep-max=100
 - poll Rx queue. Get 32 packets. Process packets. No Sleep.
 - poll Rx queue. Get 2 packets. Process packets. Sleep 1 uS.>
 - poll Rx queue. Get 0 packets. Process packets. Sleep 2 uS / Transition

Transition to max sleep

- ...
- poll Rx queue. Get 10 packets. Process packets. Sleep 100 uS max sleep steady state
- poll Rx queue. Get 10 packets. Process packets. Sleep 100 uS_
- poll Rx queue. Get 32 packets. Process packets. No Sleep. ~

How long did we sleep for ?

- \$ ovs-appctl dpif-netdev/pmd-perf-show
 - sleep iterations: 25249 (99.6 % of iterations)

Sleep time (us): 2546186 (97 us/iteration avg.)

Transition out of sleep

Test Topology

Test cases and measurement

Test cases

- Different traffic rates
 - Max throughput, 1 Mpps, 1 Kpps, 0 pps
- Different max sleep times
 - 0 uS, 10 uS, 50 uS, 100 uS, 200 us, 500 uS
- 64 byte packets
- Measurements
 - C-state
 - Power usage (Watts)
 - Wake up latencies
- Tools
 - pcm-power
 - cpupower
 - powerstat
 - powertop

Max throughput - Processor C-States

Max throughput - Power consumption

1 Mpps - Processor C-States

1 Mpps - Power consumption

1 Kpps - Processor C-States

1 Kpps - Power Consumption

0 pps - Processor C-States

0 pps - Power Consumption

Max sleep time vs. packet rate matrix

Traffic Rate

Wakeup packet latency - limited range

Packet Latency microseconds (Less is better)

Wakeup packet latency - full range

Packet Latency microseconds (Less is better)

500us sleep - Something suspicious?

DUT Cores

DUT Cores - pmd-sleep-max=0

DUT Cores - pmd-sleep-max=500

DUT Cores - pmd-sleep-max=500

DUT Cores - pmd-sleep-max=500 & no testpmd

Summary

- PMD load based sleeping feature is available in OVS 3.2
- Experimental in OVS 3.1
- Trade off between max sleep time and power saving (under zero/lowest load)
- Sleep time adapts to traffic rate
- Transition gradually into longer sleeps
- Transition quickly back to full power
- System configuration matters
- Other cores matter